Biogeochemical Cycling and Sediment Ecology

edited by

John S. Gray
Biologisk Institutt,
Universitetet i Oslo,
Blindern, Norway

William Ambrose Jr.
Department of Biology,
Bates College,
Lewiston, Maine, U.S.A.

and

Anna Szaniawska
Institute of Oceanography,
Gdansk University,
Gdynia, Poland

Kluwer Academic Publishers

Dordrecht / Boston / London

Published in cooperation with NATO Scientific Affairs Division
NATO ASI Series

Advanced Science Institute Series

A Series presenting the results of activities sponsored by the NATO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities.

The Series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division

A. Life Sciences
B. Physics
C. Mathematical and Physical Sciences
D. Behavioural and Social Sciences
E. Applied Sciences
F. Computer and Systems Sciences
G. Ecological Sciences
H. Cell Biology
I. Global Environment Change

Plenum Publishing Corporation
London and New York

Kluwer Academic Publishers
Dordrecht, Boston and London

Springer-Verlag

PARTNERSHIP SUB-SERIES
1. Disarmament Technologies
2. Environment
3. High Technology
4. Science and Technology Policy
5. Computer Networking

Kluwer Academic Publishers
Springer-Verlag / Kluwer Academic Publishers
Kluwer Academic Publishers
Kluwer Academic Publishers
Kluwer Academic Publishers

The Partnership Sub-Series incorporates activities undertaken in collaboration with NATO's Cooperation Partners, the countries of the CIS and Central and Eastern Europe, in Priority Areas of concern to those countries.

NATO-PCO-DATA BASE

The electronic index to the NATO ASI Series provides full bibliographical references (with keywords and/or abstracts) to about 50,000 contributions from international scientists published in all sections of the NATO ASI Series. Access to the NATO-PCO-DATA-BASE is possible via a CD-ROM "NATO Science and Technology Disk" with user-friendly retrieval software in English, French, and German (©WTV GmbH and DATAWARE Technologies, Inc. 1989). The CD-ROM contains the AGARD Aerospace Database.

The CD-ROM can be ordered through any member of the Board of Publishers or through NATO-PCO, Overijse, Belgium.

Series E: Applied Sciences – Vol. 59
COMMUNITY COMPOSITION OF TIDAL FLATS ON SPITSBERGEN: CONSEQUENCE OF DISTURBANCE?

J.M. WESLAWSKI*, M. SZYMELFENIG**

*Institute of Oceanology Polish Academy of Sciences, street Powstancow Warszawy 55, Sopot 81-712, Poland
**Institute of Oceanography, University of Gdansk, street Pilsudskiego 46, Gdynia 81-370, Poland

Abstract

Physical characteristics of six tidal flats on the island of Spitsbergen in the Svalbard archipelago and their macro-infaunal abundance and biomass, and meiofaunal biomass were compared. All sites are covered by fast ice for 6-8 months and experience low temperatures that kill all macrofauna by December. Only nematodes were observed to survive winter under the fast ice cover. New colonisation occurs in late May. All sites also experience massive freshwater discharge and sedimentation during summer. Flats are of similar size (1 to 4 km²) and characterised by fine-grained surface sediments, salinity below 5 PSU, and 40 to 120 mg/l of particulates in the water. Despite these physical similarities, the fauna inhabiting these tidal flats are very different. Of the 39-macrofauna species sampled, only one (Lumbricillus spp.) was found at more than 3 of the sampled areas. Most of the species were collected from only one or two areas. Macrofaunal biomass ranged from 0.9 to 10g dw/m² while density ranged from 100 to 8000 ind/m². Meiofauna abundance ranged from 100 to 8000 ind/10cm², and biomass from 0.1 to 1.7g dw/m². It is proposed that the suite of taxa occupying intertidal flats on Spitsbergen depends on the pool of colonists in the nearby subtidal.

1. Introduction

Physically stressed marine environments like exposed rocky littoral, sandy beaches, and mudflats often host similar, well-defined animal communities [1] [2]. Intertidal mudflats from a wide geographic range are commonly inhabited by a suite of species of which Macoma balthica, Neris diversicolor, Scoloplos armiger, Arenicola marina, and Hydrobia spp. are the most common. Communities with this composition have been recorded from the North Sea [3], White Sea [4], Northern Norway [5], New Newfoundland [6], Greenland [7] and Iceland [8]. Mudflats are also common in the Arctic. On Spitsbergen, a number of intertidal flats have been studied [9] [10] [11], Weslawski unpub. data), revealing a rich fauna. Surprisingly, species composition, density and biomass vary tremendously among these flats. The aim of the present study is to examine the differences among these flats and determine if differences can be explained by physical factors.

2. Materials and methods

Data for this paper come from published and unpublished studies of six intertidal flats on Spitsbergen (Figure 1). Data from Adventfjord were collected in July 1996 and 1997 on the tidal flat at the mouth of the Advent River. Macrobiota were collected during low tide, with a 21-cm diameter core, inserted 10cm into the sediment. Three replicate cores were taken at each of 10 stations, combined, sieved through a 0.5 mm mesh sieve, and the material retained on the sieve preserved in 4% buffered formaldehyde. Meiofauna were collected from the same areas as the macrofauna, with a 2-cm diameter core, inserted 5cm into the sediment. Samples were stained with Rose Bengal

in 4% formaldehyde, and sieved according to standard procedures [12]. We calculated meiofaunal biomass by converting linear measurements to volume according to Feller and Warwick [13]. Macrofaunal dry-weight was determined by drying animals at 60°C for 24 hours. For each macrofaunal species, the mean specimen size and weight were established and used for biomass calculations based on established relationships [14].

Data from Nottingham Bay and Kapp Borthen were collected by us and have been partly published [12] [15]. Other data were taken from the literature (Nottingham Bay, [9] [11], Sassenfjord, Colesbay, and Thiis Bay, [10]. All studies used a 0.5mm mesh sieve for collection of macrofauna. The first author visited each of the tidal flats considered in this study during the summers 1996 and 1997.

3. Results and discussion

3.1 Physical settings

Despite being located in different regions of Spitsbergen, the 6 flats have similar physical characteristics (Table 1). The flats are typified by riverine discharge resulting in a salinity as low at 5 PSU at low tide, very fine surface sediment, large suspension
loads and consequently large sedimentation rates. Probably the most important physical stress for the infaunal community is the 6-8 months coverage by fast ice. When the ice melts in spring, it removes the upper part (10-cm) of sediment.

4. Faunal characteristics

Thirty-nine species of macrofauna and 6 taxa of meiofauna were collected from Spitsbergen tidal flats during summer (Table 2). No taxon was found in all localities, and only one (Lubricillus spp.) was found at more than 3 locations. Density of macrofauna ranged from 40 to 6000 ind/m², and biomass from 0.9 to 10 g dw/m² (Table 3). The contribution of meiofauna to total benthic infaunal biomass ranged from 10 to 50% (Table 3). Size frequency distribution of benthic species, shows almost equal contribution to biomass from meio and macrofauna (Fig. 2). Such size distributions have been recorded from temperate tidal flats [16] and from Svalbard in the deep sublittoral [17].
Table 1. Physical conditions of 6 intertidal soft-sediment habitats on Spitsbergen Island.

<table>
<thead>
<tr>
<th></th>
<th>Nunnemosen</th>
<th>Adventfjorden</th>
<th>Sautsundfjorden</th>
<th>Colby Bay</th>
<th>Kapp Bossen</th>
<th>This Bay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area exposed during low tide (km²)</td>
<td>2</td>
<td>3</td>
<td>0.5</td>
<td>0.25</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>Length of supporting river (km)</td>
<td>3</td>
<td>21</td>
<td>15</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Initial sediment load in supporting river (tonnes/yr)</td>
<td>200-400</td>
<td>150-500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspended matter during high tide (mg/L)</td>
<td>30-100</td>
<td>40-1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface water temperature at low water</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedimentation (g/m²/yr)</td>
<td>130-360</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of sub-caly in surf sediments</td>
<td>55 to 60</td>
<td>80 to 60</td>
<td>24</td>
<td>46</td>
<td>45</td>
<td>15 to 32</td>
</tr>
<tr>
<td>Daily salinity range (PSU)</td>
<td>0.5 to 30</td>
<td>2 to 28</td>
<td>5 to 30</td>
<td>15 to 30</td>
<td>10 to 30</td>
<td></td>
</tr>
<tr>
<td>Organic matter content (%)</td>
<td>3</td>
<td>2 to 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Mean macrofaunal density (individuals/m²) from 6 intertidal soft-sediment areas and metachronal density (individuals/10 cm²) from 3 intertidal soft-sediment areas on Spitsbergen Island. Feeding types: D= deposit feeder, C=commissive, S=suspension feeder.

<table>
<thead>
<tr>
<th>Macrofaunal Taxa</th>
<th>Feeding Type</th>
<th>Nunnemosen/1</th>
<th>Adventfjorden/1</th>
<th>Sautsundfjorden/1</th>
<th>Colby Bay/1</th>
<th>Kapp Bossen/1</th>
<th>This Bay/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampharetidae</td>
<td>D</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischyomelus</td>
<td>D</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arenicolidae</td>
<td>D</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arenicolidae</td>
<td>C</td>
<td>30</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arenicolidae</td>
<td>D</td>
<td>30</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bristocrenalus</td>
<td>D</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bristocrenalus</td>
<td>C</td>
<td>10</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capitellidae</td>
<td>D</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>1</td>
<td></td>
<td>8</td>
<td></td>
<td>4028</td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>25</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>20</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>15</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>15</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>15</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>15</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>15</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>15</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromadoris sp.</td>
<td>D</td>
<td>15</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Metachronal Taxa

- Homalone
- Hapagmoniana
- Cribellina
- Capitellidae
- Tubificidae
- Oligochaeta
- Polychaeta
- Nereidae

4.1 IS THERE A TYPICAL ARCTIC MUDFLAT COMMUNITY?

Infaunal abundances and species composition vary tremendously among the intertidal areas examined. Even at taxonomic levels higher than species, very different groups dominate localities: Polychaetes (Sassenfjord, Colesbay), Crustacea (Adventfjord), Priapulida (Nottingham Bay) (Figure 1). Intertidal soft-sediments exhibit very little similarity in faunal composition among locations compared with other marine habitats (Laminaria beds, subtidal soft-sediments, and rocky intertidal) on Svalbard that can exhibit a 60-70% similarity in taxonomic composition among sites (Weslawski unpub. data). A low level of similarity is observed among glacier bays on Spitsbergen, where less than half of the species occurred in all localities [18].

Macrofauna and most of the meiofauna appear to die or leave intertidal areas during the period of fast ice. No animals were recovered from several macrofaunal samples taken from under fast ice cover in winter revealed no animals. Only nematodes, at one tenth of summer density, have been found under fast ice (Weslawski unpub. data). Wisniewska (pers. comm.) found Harpacticoids under the fast ice in Nottingham Bay. Other taxa appear after fast ice melt. Meiofauna recover quickly following disturbance [19] and meiofaunal taxonomic composition and density are similar among Spitsbergen mudflats [12].

Effects of ice on intertidal communities have received little attention. Intertidal mudflats in the Bay of Fundy (Canada) are consistently covered by ice in winter [20]. The top few centimetres of sediment may be frozen in ice [21] and blocks of ice moved by tidal currents leave tracks visible from the air [20]. Some taxa, particularly in the upper intertidal, experience winter mortality, presumably due to the combined effects of ice and low temperature [22]. Many taxa, however, are not influenced by winter conditions [21]. Where severe, ice scour can remove late successional species and allow the colonisation of opportunists [23] [24]. The intertidal of Svalbard certainly experiences sufficiently severe conditions that the seasonal removal of macrofauna can be expected.
Table 3. General characteristics of macro and meio-benthos from 6 intertidal soft-sediment habitats on Spitsbergen. Data were collected during the summer and from literature cited in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Nottingham Bay</th>
<th>Adventfjord</th>
<th>Sassenfjord</th>
<th>Colesbay</th>
<th>Kapp Bøthven</th>
<th>Thiis Bay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average biomass of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>macrofauna (g</td>
<td>3.3</td>
<td>1.4</td>
<td>10.6</td>
<td>1.8</td>
<td>13.3</td>
<td>10.7</td>
</tr>
<tr>
<td>dw/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average biomass of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>meiofauna (g</td>
<td>1.7</td>
<td>0.7</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dw/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average macrofauna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>density (indiv./m²)</td>
<td>325</td>
<td>814</td>
<td>8422</td>
<td>952</td>
<td>4350</td>
<td>8834</td>
</tr>
<tr>
<td>Average meiofauna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>density (indiv./10cm²)</td>
<td>6000</td>
<td>2500</td>
<td></td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxon dominating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>macrofaunal biomass</td>
<td>Priapulida</td>
<td>Crustacea</td>
<td>Polychaeta</td>
<td>Polychaeta</td>
<td>Crustacea</td>
<td>Polychaeta</td>
</tr>
<tr>
<td>Neighbouring</td>
<td>Phytal zone</td>
<td>Deep</td>
<td>Shallow soft</td>
<td>Shallow</td>
<td>Shallow</td>
<td>Shallow</td>
</tr>
<tr>
<td>marine benthic</td>
<td></td>
<td>sublittoral</td>
<td>sublittoral</td>
<td>hard</td>
<td>soft</td>
<td>soft</td>
</tr>
<tr>
<td>assemblage</td>
<td></td>
<td></td>
<td></td>
<td>bottom</td>
<td>sublittoral</td>
<td>sublittoral</td>
</tr>
</tbody>
</table>

All species listed in Table 1 have been recorded in the sublittoral. No exclusively intertidal species occur on Spitsbergen mudflats. This contrasts with Spitsbergen's rocky intertidal which is inhabited by Littorina saxatilis, Semibalanus balanoides, and Gammarus setosus that have only been recorded from the intertidal [15] [25].

The differences in macrofaunal abundance and composition among flats are likely caused by different patterns in yearly recolonisation. Most benthic species from latitudes as high as Svalbard might be expected to have direct development or lecitotrophic larvae [26]. There has been no study of the reproductive behaviour of Svalbard polychaetes and bivalves. Most of the larvae of benthic animals are present in coastal plankton from April to early June before the flats are ice-free [27]. While some larval colonisation of intertidal areas certainly occurs, many of the colonists may be juveniles transported from the subtidal. If this is true, than the nearby subtidal is likely an important source area for intertidal recolonization.

The subtidal adjacent to each mudflat is different among areas (Table 3). Nottingham Bay, with the richest faunal list, is adjacent to extensive, shallows composed of a mixture of hard- and soft-bottom, overgrown with dense Laminaria meadows [9].

The mudflat at Adventfjord is very poor in macrofaunal species diversity. It is flanked by a steep muddy slope, dropping from 0 to 40m in less than 500m distance. The shallow sublittoral zone (2-20m) adjacent to the Adventfjord intertidal is very narrow and lacks any macrophytes [15]. Tidal flats examined by Ambrose and Leinaas [10] (Colesbay, Thiis Bay, Sassenfjord) are probably reconolized from the nearby shallow sublittoral which supports a high diversity of polychaetes [28]. Consequently, the recolonisation of the flats examined, that takes place each year following ice melt, relies on source areas with very different community composition and very different macrofaunal assemblages develop on the adjacent tidal flats. A similar explanation has been offered to explain the composition of intertidal rock pools. Astles [29] found considerable faunistic differences among examined ponds and related each pool's faunal composition to the history of each locality. The importance of history in determining patterns of species distribution and abundance on sublittoral hard [30] and intertidal soft [31] substrates has long
been recognised.

Other factors might contribute to the structure of intertidal communities on Spitsbergen. Shore birds are conspicuous predators on some Spitsbergen mudflats [32] and they can influence the distribution and abundance of intertidal fauna [33] [34] [35] [36]. Despite similarities in grain size among flats, flats may differ in sediment organic content and the abundance of benthic diatoms. The quantity and quality of food has been demonstrated to influence the structure of arctic subtidal soft-sediment communities [37] [38]. The impact of these and other factors in explaining patterns of distribution and abundance of infauna on arctic intertidal flats need to be examined.

In summary, tidal flats on Spitsbergen support seasonal communities inhabited by opportunistic species. Annual colonisation of the flats may be largely dependent on recruits from the adjacent sublittoral community that differ among locations in their physical and biological characteristics. Consequently, tidal flats on Spitsbergen support very different macrofaunal communities. Seasonally ephemeral communities are probably typical of arctic intertidal soft-sediments. Macrofaunal species community structure on these flats, like on Spitsbergen, are dependent on sublittoral communities for recruits. To the extent that arctic sublittoral source communities vary in composition, intertidal flats will harbour different suites of species.

5. Acknowledgements

We wish to express our thanks to Drs. Alexander Keck and Ole Jorgen Lonne for their help with the University Studies on Svalbard (UNIS) and IOPAS Co-operative Project "Arctic Tidal Flats" and to Dr. William G. Ambrose, Jr. and two referees for their comments on earlier drafts of this manuscript.

6. References